Optimal feedback control of Hilfer fractional evolution inclusions involving history-dependent operators
نویسندگان
چکیده
منابع مشابه
Cauchy Problems for Functional Evolution Inclusions Involving Accretive Operators
We study the existence and stability of solutions for a class of nonlinear functional evolution inclusions involving accretive operators. Our approach is employing the fixed point theory for multivalued maps and using estimates via the Hausdorff measure of noncompactness.
متن کاملOptimal Control of Impulsive Stochastic Evolution Inclusions
In this paper, we consider a class of infinite dimensional stochastic impulsive evolution inclusions driven by vector measures. We use stochastic vector measures as controls adapted to an increasing family of complete sigma algebras and prove the existence of optimal controls.
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملEvolution Mixed Variational Inclusions with Optimal Control
Evolution mixed maximal monotone variational inclusions with optimal control, in reflexive Banach spaces, are analized. Solvability analysis is performed on the basis of composition duality principles. Applications to nonlinear diffusion constrained problems, as well as to quasistatic elastoviscoplastic contact problems exemplify the theory.
متن کاملNonconvex Evolution Inclusions Generated by Time - Dependent Subdifferential Operators
We consider nonlinear nonconvex evolution inclusions driven by time-varying subdifferentials 0(t,x) without assuming that (t,.) is of compact type. We show the existence of extremal solutions and then we prove a strong relaxation theorem. Moreover,r we show that under a Lipschitz condition on the orientor field, the solution set of the nonconvex problem is path-connected in C(T,H). These result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2023
ISSN: ['1586-8850', '1787-2405', '1787-2413']
DOI: https://doi.org/10.18514/mmn.2023.4109